Small cell lung cancer

Haobin Chen, M.D., Ph.D.
Assistant Clinical Investigator
TGIB, NCI

Outline

- Small cell lung cancer 101
- Genetic abnormalities of small cell lung cancer
- SCLC as a resistance mechanism to EGFR TKI in lung adenocarcinoma
- Examples of translational medicine: Story of Rova-T
- Examples of translational medicine: Immune checkpoint inhibitors
- Other promising agents under clinical development
- Extrapulmonary small cell carcinoma

SCLC morphology

Morphology of SCLC

Small cell lung cancer (SCLC) is also known as oat cell carcinoma. Its morphology resembles oat grains and appears as small oval cells with scanty cytoplasm.

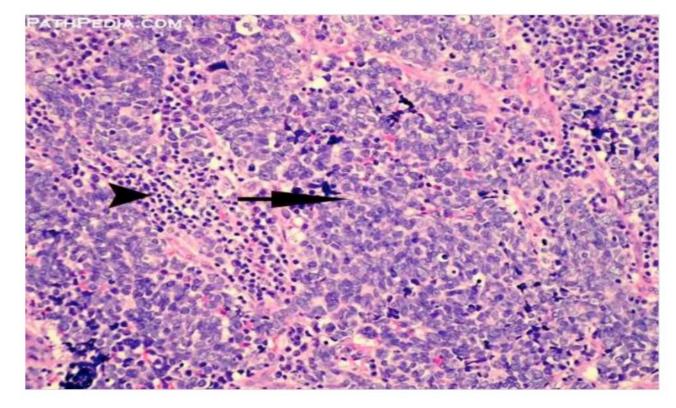
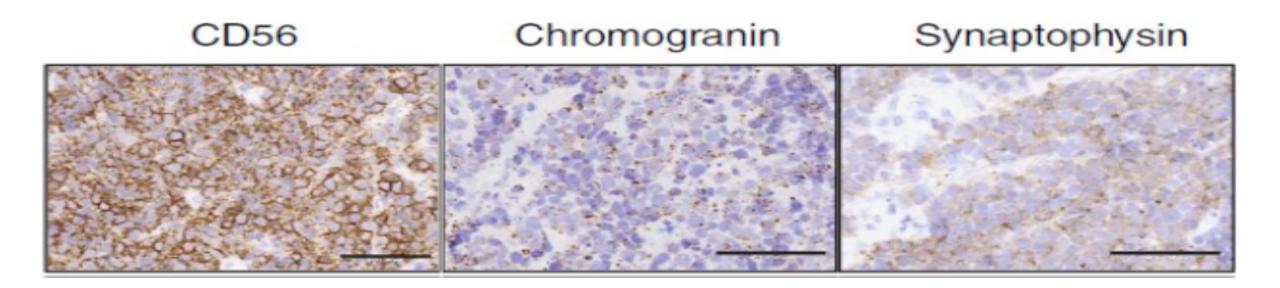



Image obtained from Pathpedia.com

IHC staining

IHC staining to diagnose SCLC

SCLC

SCLC

- SCLC accounts for 10% to 15% of all lung cancer cases, and is closely linked to the intensity and duration of tobacco smoking.
- Compared to NSCLC, SCLC tends to disseminate earlier in the course of its natural history and displays a more aggressive clinical behavior.
- SCLC is also commonly associated with paraneoplastic endocrinopathies (e.g., Cushing syndrome).

SCLC is considered as a recalcitrant cancer

- Recalcitrant Cancer Research Act of 2012.
- Recalcitrant cancer:
 - Have a 5-year relative survival rate of less than 20%
 - Estimated to cause the death of at least 30,000 individuals in the United States per year.
- NCI identified four major obstacles to progress in 2014:
 - Continuing risk of developing the disease that remains for decades after smoking cessation.
 - Most patients have widely metastatic tumors at the time of diagnosis.
 - Rapid development of resistance to chemotherapy in more than 95% of SCLC patients.
 - Lack of tumor tissue for clinical, molecular, and cell biological studies.

SCLC:

<7%

~30,000 deaths/yr

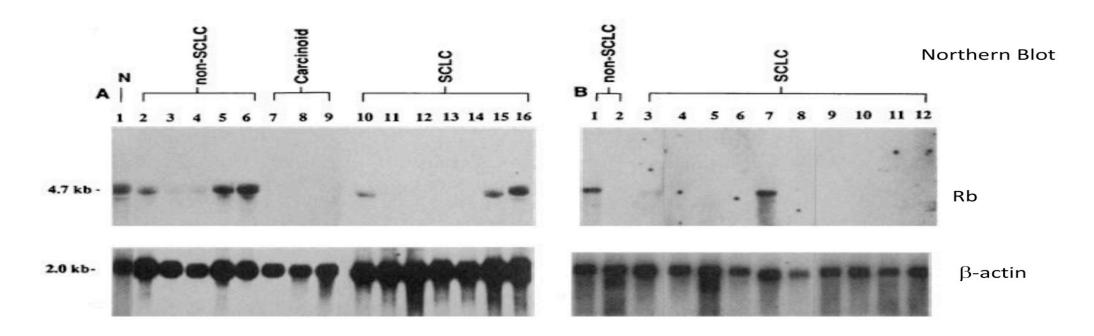
Systemic therapy of SCLC

- It was learned quite early in the 1970s that combination therapy produces superior survival compared with single-agent treatment based on several randomized trials.
- First-line therapy: platinum + etoposide
- Second-line therapy: Topotecan
- Third line therapy: Nivolumab

EPSCC

Exertification and the continuous (EPSCC)

Table 1
Frequency of EPSCC per site of origin.


	Percentage of SCC/total per site of origin	Estimated number of patients in US per year*
Pulmonary	15-20%	32,250-43,000
Oesophagus	0.8-2.4%	130-395
Larynx	0.5-1%	60-120
Bladder	0.3-1.0%	200-680
Cervix	±1%	±110
Prostate	±2%	±250
Unknown primary	7–30% of all EPSCC	70–300

SCC denotes small cell carcinoma; EPSCC denotes extrapulmonary mall cell carcinoma.

^{*} http://www.cancer.gov/cancertopics/pdq.

RB loss

Genetic abnormalities of SCLC– Loss of Rb gene

Harbour W et al. Science. 1988, 241:353-7.

TP53 inactivation

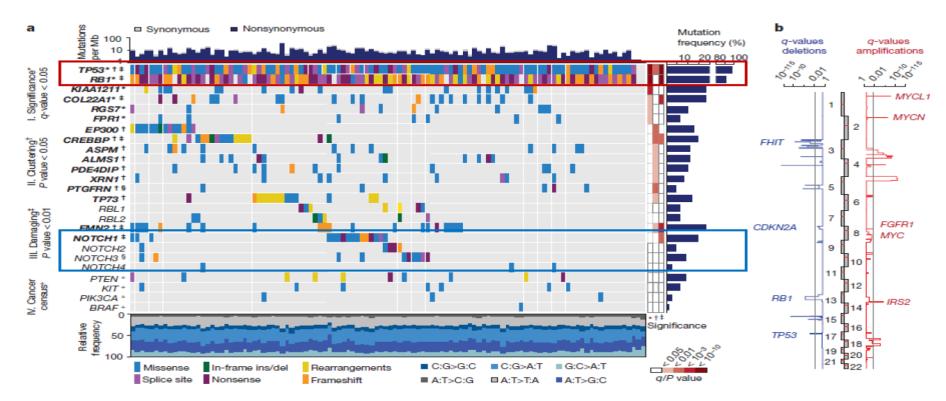
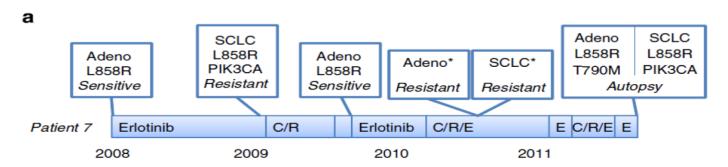

Genetic abnormalities of SCLC – Inactivation of TP53 gene

Table 1. Abnormalities of p53 in lung cancer lines. Terms and symbols for mRNA levels are as follows: +, easily detectable p53 transcripts comparable to levels found in normal lung; reduced or trace, greatly reduced amount of transcript compared to normal lung; undetectable, undetectable by both Northern blot analysis and the RNase protection assay. Full designation of the cell lines includes the prefix "NCI". All but H60, H69, H82, H187, H345, H378, and H510 were established from patients before treatment.

Type of mutations	mRNA level	Tumor cell type	Cell line
Homozygous deletion Homozygous deletion with truncated mRNA	Undetectable Reduced	Bronchioloalveolar Extrapulmonary small cell	H358 H660
DNA rearrangement	Undetectable	Adenocarcinoma	H969
Abnormal size mRNA	+ + + Trace	Small cell Adenocarcinoma Adenosquamous Small cell	H526 H676 H647 H82
Point or small mutation	+ + + + + + Reduced Reduced	Small cell Pulmonary carcinoid Adenocarcinoma Bronchioloalveolar Adenosquamous Large cell Small cell Adenocarcinoma	H1436, H1450 H727 H23 H820 H125 H661 H889, H1092 H920
None detected	Trace Reduced	Small cell Squamous	H60, H69, H209, N417 H520
None detected	+ + + +	Small cell Extrapulmonary small cell Adenosquamous Squamous Large cell	H187, H345, H378 H510 H596 H226 H460, H1385


Genetic abnormalities

Genetic abnormalities of SCLC: WES Analysis

SCLC conversion

SCLC conversion as a resistance mechanism to EGFR TKI in lung adenocarcinoma: Loss of TP53 and Rb genes

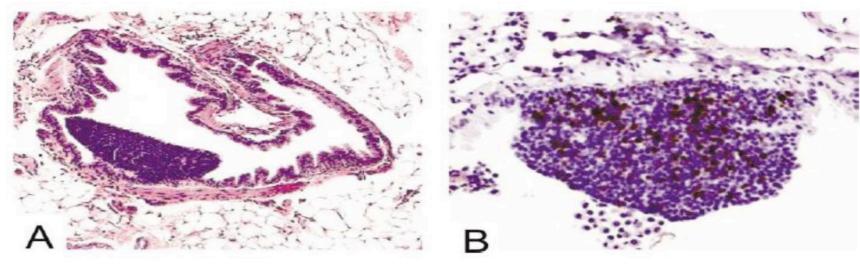

b				
Sample	Normal liver	Diaphragm tumour	Lung tumour	Liver tumour
Histological features	Normal tissue	Adenocarcinoma	SCLC	SCLC
Number of reads	179,298,190	350,864,233	388,189,232	318,482,313
Average coverage	146	287	319	253
Primary EGFR mutation	WT	L858R	L858R	L858R
Secondary EGFR mutation	WT	T790M	WT	WT
PIK3CA status	WT	WT	E545K	E545K
TP53 status	WT	WT/∆154–163	-/∆154-163	-/∆154 - 163

Table 1 RB status of TKI-resistant patients.					
Patient	Cancer type	Resistance	Histology	RB status	Detection method
1	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	NE	Neg	IHC/genetic
	Lung	Post	NE	Neg	IHC/genetic
2	Lung	Pre	Adeno	Pos	IHC
	Lung	Pre	Adeno	Neg	IHC
	Lung	Post	NE	Neg	IHC
3	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	NE	Neg	IHC
4	Lung	Post	NE	Neg	IHC
5	Lung	Post	NE	Neg	IHC
6	Lung	Pre	Adeno	Neg	IHC
	Lung	Post	NE	Neg	IHC/genetic*
7	Lung	Post	Adeno	Pos	IHC/genetic
	Lung	Post	NE	Neg	IHC/genetic
	Lung	Post	NE	Neg	Genetic
8	Lung	Post	Adeno	Pos	IHC
	Lung	Post	NE	Neg	IHC
9	Lung	Post	NE	Neg	IHC
10	Lung	Post	Adeno	Neg	IHC
11	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	Adeno	Pos	IHC
12	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	Adeno	Pos	IHC
13	Lung	Post	Adeno	Pos	IHC
14	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	Adeno	Pos	IHC
15	Lung	Post	Adeno	Pos	IHC
16	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	Adeno	Pos	IHC
17	Lung	Pre	Adeno	Pos	IHC
	Lung	Post	Adeno	Pos	IHC
18	Lung	Post	Adeno	Pos	IHC
19 [†]	Lung	Intrinsic	NE	Neg	IHC

Niederst MJ et al. Nat Commun. 2015;6:6377.

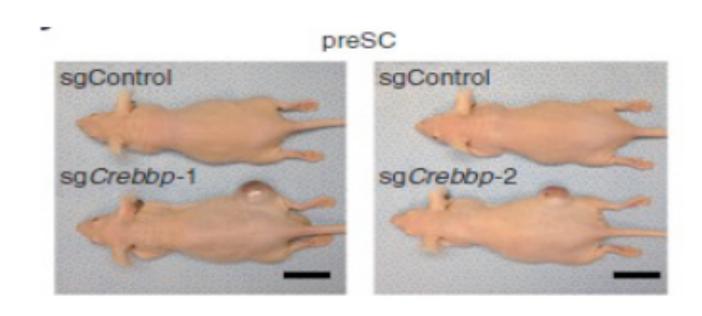
TP53 and RB inactivation

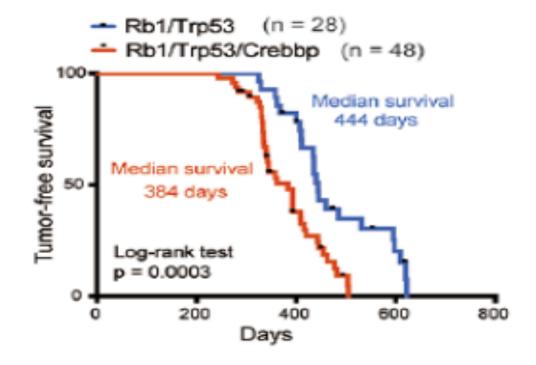
Conditional inactivation of Trp53 and Rb1 led to SCLC in mouse model

Hyperplastic focus in the airway (H&E staining)

Anti-BrdU staining

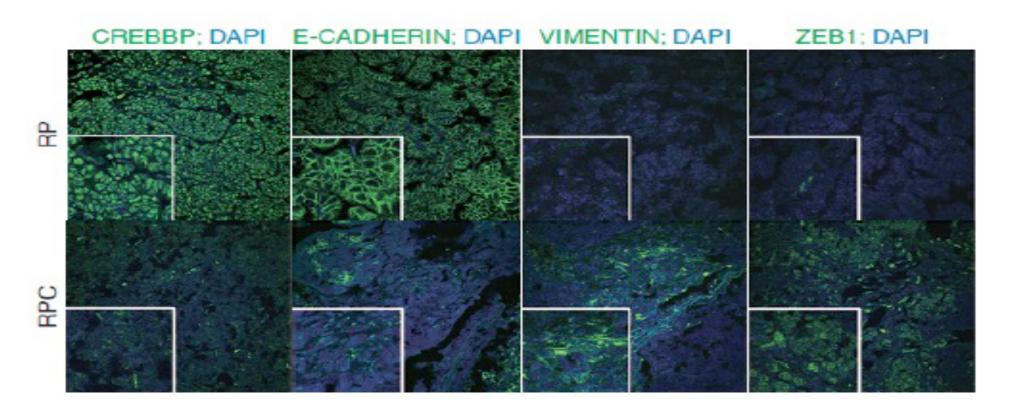
SCLC became detectable within 196-350 days in the mouse model with conditional KO of TP53 and Rb1.

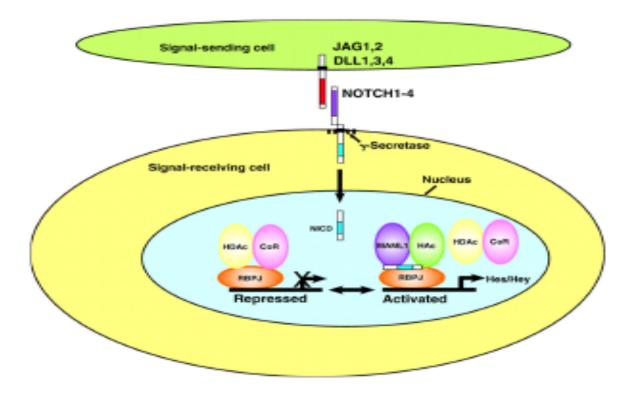

Genomic abnormalities


Genomic abnormalities of SCLC

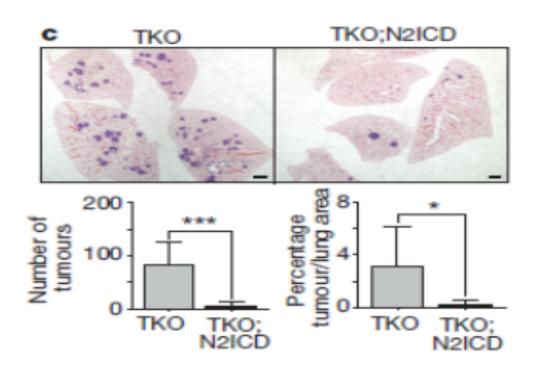
- Inactivation of Rb and TP53
- Inactivation of Epigenetic genes EP300 and CREBBP
- 3. Inactivation of Notch signaling

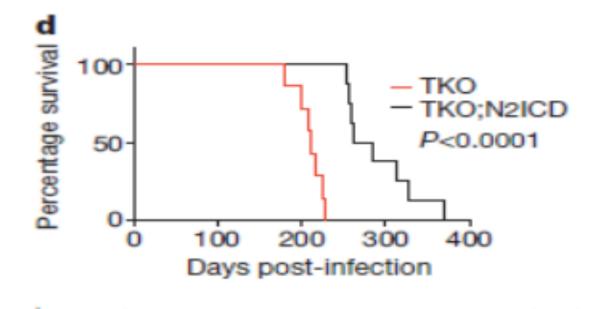
Inactivation of Crebbp


Inactivation of Crebbp accelerated development of SCLC

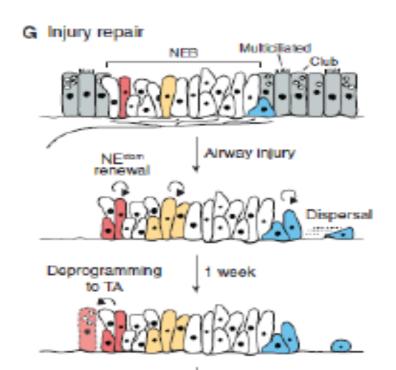

E-Cadherin

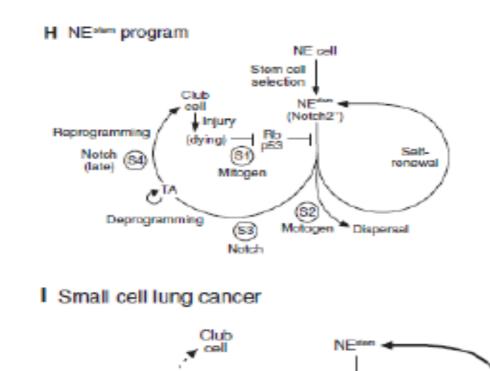
Inactivation of Crebbp Reduced Expression of E-cadherin


Notch signaling pathway


Notch Signaling Pathway

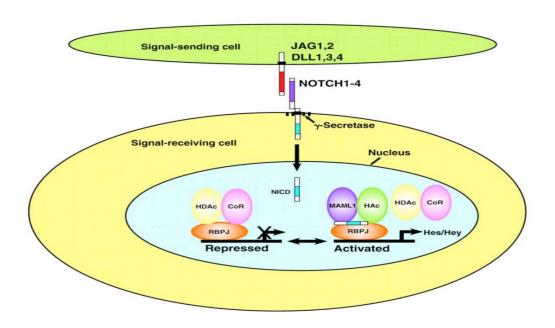
Notch signaling

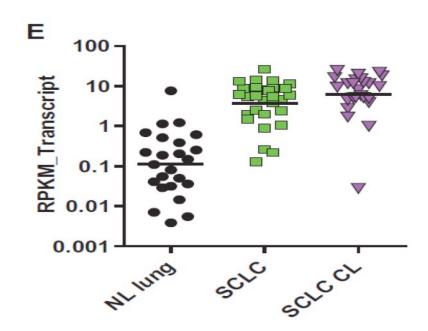

Forced activation of Notch signaling decreased SCLC growth in a transgenic mouse model



Mouse model using NE stem cells

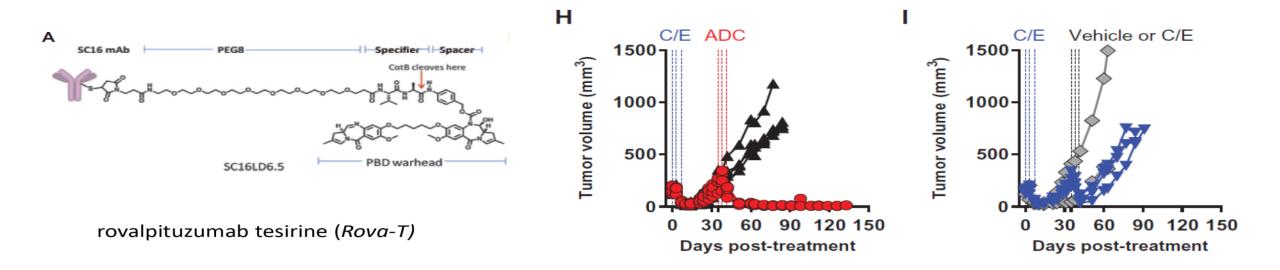
A model: SCLC is developed from NE stem cells

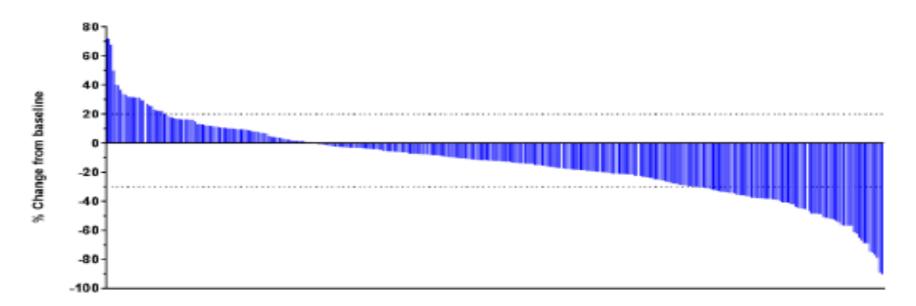




Examples of Translational medicine: Story of Rova-T

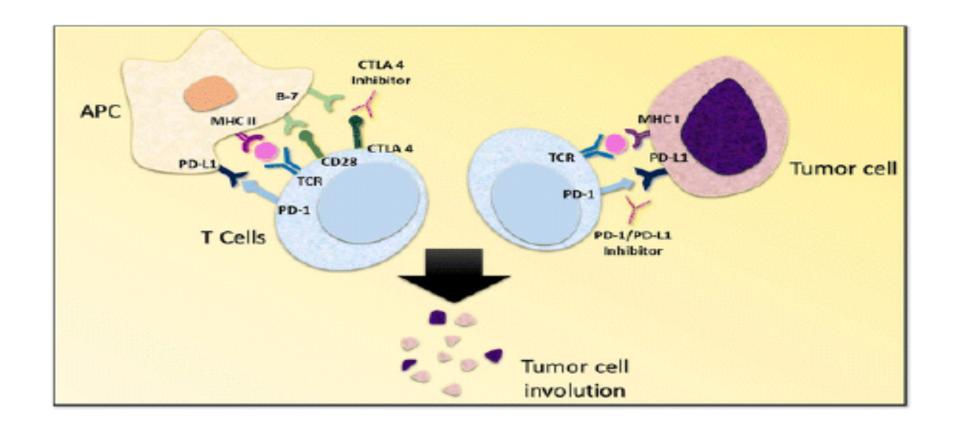
DLL3 overexpression


Overexpression of DLL3 in SCLC



Phase II result of Rova-T

Rova-T: a DLL3 targeting antibody-drug conjugate


Phase II result of Rova-T (TRINITY Trial)

ORRs were 12.4%, 14.3% and 13.2% in all, DLL3^{high}, and DLL3⁺ patients, respectively. Median OS was 5.6 months in all patients.

Immunotherapy in SCLC

Immune checkpoints

Mutation loads

Mutation loads in different cancer types

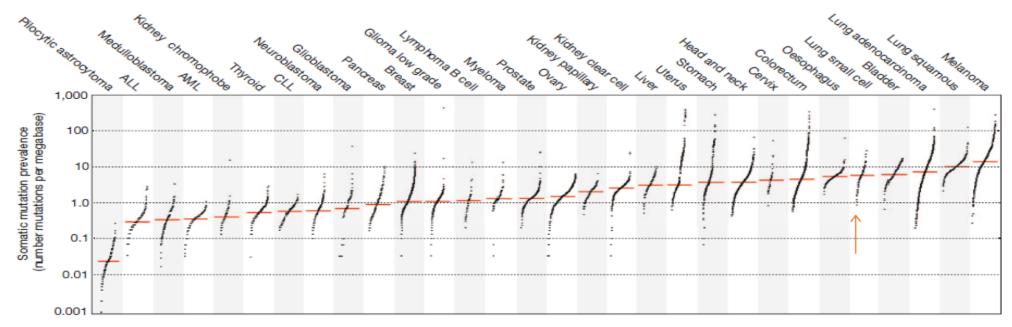
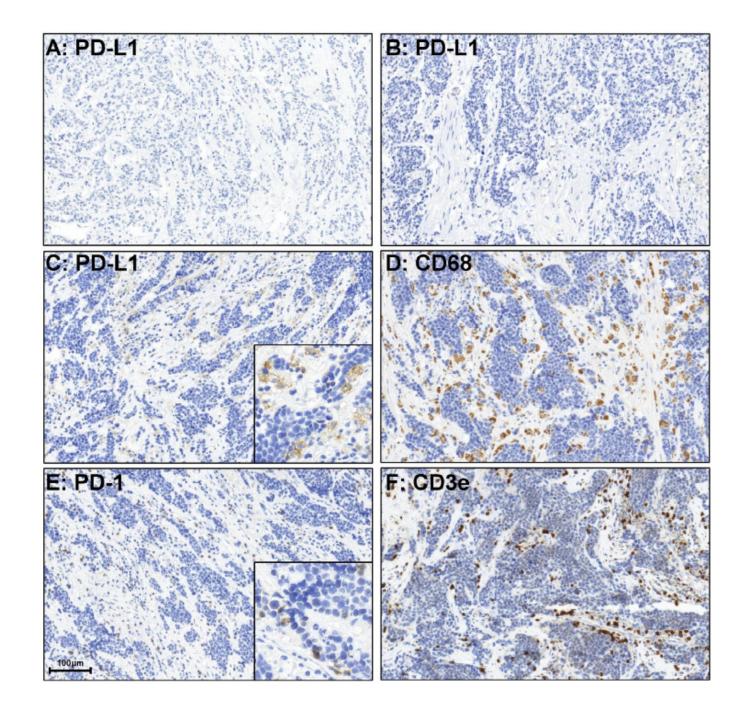
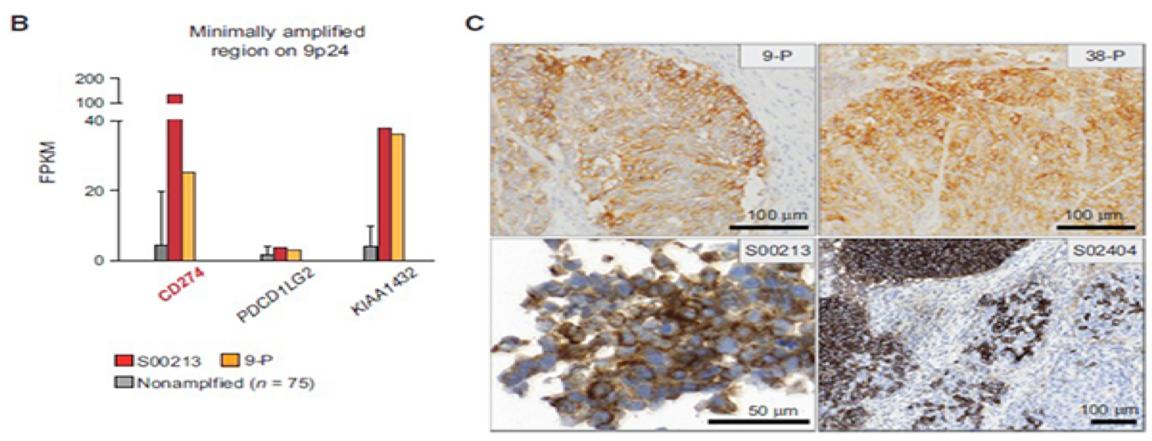



Figure 1 | The prevalence of somatic mutations across human cancer types. Every dot represents a sample whereas the red horizontal lines are the median numbers of mutations in the respective cancer types. The vertical axis (log scaled) shows the number of mutations per megabase whereas the different

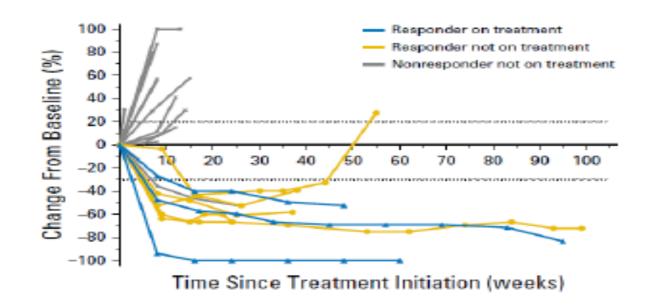

cancer types are ordered on the horizontal axis based on their median numbers of somatic mutations. We thank G. Getz and colleagues for the design of this figure²⁶. ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; CLL, chronic lymphocytic leukaemia.

PD-1 and PD-L1 are expressed in the tumor stroma of small cell carcinoma.

CD274 amplification

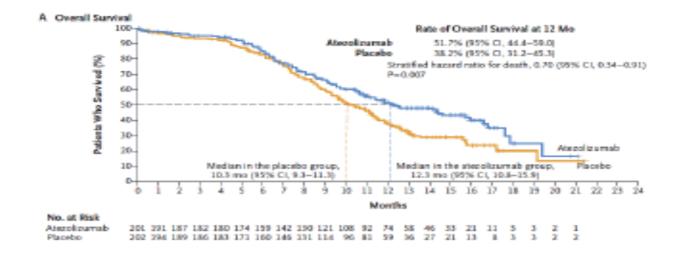
CD274 (PD-L1) gene is amplified in 1.9% of SCLC

George et al. Clinical Cancer Research 2017, 23(5):1220-6


KEYNOTE-028

Third-line: Phase Ib KEYNOTE-028 (Pembrolizumab)

Study patient population:


- 1. Histologically confirmed SCLC or pulmonary neuroendocrine tumor
- 2. PD-L1 expression in ≥ 1% of tumor and associated inflammatory cells or positive staining in stroma

Population			
Efficacy	Value of Patient Population (n = 24)		
ORR*, No. 1% [95% CI])	8 (33.3 [16.6-66.3])		
CR, No. (%)	1 (4.2)		
PR, No. (%)	7 (29.2)		
SD, No. (%)	1 (4.2)		
Median DOR, monthst (range)	$19.4 (\ge 3.6 \text{ to} \ge 20.0)$		
Median TTR, months (95% CI)	2.0 (1.7-3.7)		
DCR‡, No. (% [95% CI])	8 (33.3 [15.6-55.3])		
Progressive disease, No. (%)	13 (54.2)		
Not evaluable, No. (%)	2 (8.3)		
PFS			
Events, No. (%)	20 (83.3)		
Median, months (95% CI)	1.9 (1.7-5.9)		
Six-month rate, % (95% CI)	28.6 (12.4-47.2)		
Twelve-month rate, % (95% CI)	23.8 (9.1-42.3)		
OS			
Events, No. (%)	15 (62.5)		
Median, months (96% CI)	9.7 (4.1-NR)		
Six-month rate, % (95% CI)	66.0 (43.3-81.3)		
Twelve-month rate, % (95% CI)	37.7 (18.4-57.0)		

Impower 133 trial

Addition of ICI to front-line chemotherapy improved survival of SCLC patients (Impower 133 trial)

Variable	Atexolizursab Group (N = 201)	Macebo Group (N=202)
Objective continued response†	121 (60.2 [53.3-67.0])	130 (64.4 [57.3-71.6]
Complete response — no. (% (95% CI))	5 (2.5 [0.8-5.7])	2 (1.0 [0.1-3.5])
Partial response — no. (% (95% CII)	116 (57.7 (50.6-64.6))	128 (6) 4 [56.3-30.0]
Median duration of response (range) — mot	4.2 (1.4)-19.5)	3.9 (2.0-16.15)
Ongoing response at data outoff — no./total no. (90)	18/121 (14.9)	7/130 (5.4)
Stable disease — no. (% [95% CI])	42 (20.9 [15.5-27.2])	43 (21.3 [15.9-27.6])
Progressive disease — no. (% (95% CI))	22 (19.9 [7.0-16.1])	14 (0.9 (3.8-11.4))

Summary

SCLC is a recalcitrant cancer and new therapy is urgently needed.

Inactivation of TP53 and RB1 are almost universal in SCLC.

 Newer therapies are on the horizon: Rova-T ADC and Immunotherapy with immune checkpoint inhibitors

Questions?